metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[1,3-bis(diphenylphosphanyl)propane]copper(I) tetrachloridogallate(III)

Nian-Nian Wang,^a Feng Hu,^a Tai-Ke Duan,^a Qun Chen^b and Qian-Feng Zhang^{a,b,*}

^aInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China, and ^bDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China Correspondence e-mail: zhangqf@ahut.edu.cn

Received 27 May 2012; accepted 28 May 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.007 Å; R factor = 0.055; wR factor = 0.159; data-to-parameter ratio = 20.9.

In the title compound, $[Cu(C_{27}H_{26}P_2)_2][GaCl_4]$, the Cu^I atom in the complex cation is *P*,*P'*-chelated by two 1,3-bis(diphenylphosphanyl)propane ligands in a distorted tetrahedral geometry, while the Ga^{III} cation is coordinated by four chloride anions in a distorted tetrahedral geometry. In the crystal, weak $C-H\cdots\pi$ interactions occur between adjacent complex cations.

Related literature

For background to copper(I) phosphane compounds, see: Bownaker *et al.* (1995); Nicola *et al.* (2005); Lobana *et al.* (2009). For related structures, see: Xie *et al.* (1997); Comba *et al.* (1999); Rudawska & Ptasiewicz-Bak (2003).

Experimental

Crystal data

$[Cu(C_{27}H_{26}P_2)_2][GaCl_4]$	
$M_r = 1099.90$	
Monoclinic, $P2_1/n$	
a = 21.077 (4) Å	

b = 11.200 (2) Å c = 22.605 (5) Å

> $\beta = 99.424 \ (3)^{\circ}$ V = 5264.3 (18) Å³

Z = 4Mo $K\alpha$ radiation $\mu = 1.28 \text{ mm}^{-1}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{min} = 0.629, T_{max} = 0.894$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.159$ S = 1.0412058 reflections

Table 1

Hydrogen-bond geometry $(\text{\AA}, \circ)$.

 $\mathit{Cg1}$ and $\mathit{Cg2}$ are the centroids of the C21–C26 and C81–C86 benzene rings, respectively.

T = 296 K

 $R_{\rm int} = 0.052$

577 parameters

 $\Delta \rho_{\text{max}} = 0.85 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.76 \text{ e } \text{\AA}^{-3}$

 $0.40 \times 0.25 \times 0.09 \text{ mm}$

32381 measured reflections

12058 independent reflections

6644 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C14-H14\cdots Cg1^{i}$	0.93	2.77	3.702 (8)	175
$C55-H55\cdots Cg2^{ii}$	0.93	2.66	3.526 (5)	155
	· 1 · 1	. 3 (**)		

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This project was supported by the Program for New Century Excellent Talents in Universities of China (NCET-08–0618).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5551).

References

- Bownaker, G. A., Hart, R. D., Jone, B. E., Skelton, B. W. & White, A. H. (1995). *J. Chem. Soc., Dalton Trans.* pp. 3063–3070.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,
- USA. Comba, P., Katsichtis, C., Nuber, B. & Pritzkow, H. (1999). *Eur. J. Inorg. Chem.* pp. 777–783.
- Lobana, T. S., Khanna, S., Hundal, G., Butcher, R. J. & Castineiras, A. (2009). Polyhedron 28, 3899–3906.
- Nicola, C. D., Effendy, Fazaroh, F., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2005). *Inorg. Chim. Acta* 358, 720–734.
- Rudawska, K. & Ptasiewicz-Bak, H. (2003). J. Coord. Chem. 56, 1567–1574. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Xie, W.-G., Wang, R.-W., Xiong, Y.-F., Yang, R.-N., Wang, D.-M., Jin, D.-M., Chen, L.-R. & Luo, B.-S. (1997). *Chin. J. Struct. Chem.* **16**, 293–297.

supplementary materials

Acta Cryst. (2012). E68, m870 [doi:10.1107/S1600536812024269]

Bis[1,3-bis(diphenylphosphanyl)propane]copper(I) tetrachloridogallate(III)

Nian-Nian Wang, Feng Hu, Tai-Ke Duan, Qun Chen and Qian-Feng Zhang

Comment

There are a number of published studies of solution equilibria and structures that involve copper(I) compounds with phosphane ligands with copper(I)-to-ligand ratios (Bownaker *et al.*, 1995). Mononuclear phosphane-copper(I) complexes with chelating and bridging phosphine ligands in various coordination modes have been well isolated and structurally characterized (Lobana *et al.*, 2009). For examples, copper(I) nitrate and halide complexes of stoichiometry Cu(dppm)X (dppm = bis(diphenylphosphanyl)methane), Cu₂(dppe)₃X₂ (dppe = bis(diphenylphosphanyl)- ethane), Cu(dppe)₂X, and Cu(dppp)X (dppp = bis(diphenylphosphanyl)propane) (X = NO₃, Cl, Br, and I) have been prepared and structurally characterized (Nicola *et al.*, 2005; Comba *et al.*, 1999; Xie *et al.*, 1997). It appears that the copper(I) complexes could be stabilized by organic phosphane ligands. Herein, we reported that an anionic complex, [Cu(dppp)₂][GaCl₄], with tetrahedral copper(I) in the [Cu(dppp)₂]⁺ cation and tetrahedral gallium(III) in the [GaCl₄]⁻ anion.

The title compound crystallizes in the monoclinic space group $P2_1/c$. The molecular structure consists of the cationic $[Cu(dppp)_2]^+$ unit and the anionic $[GaCl_4]^-$ unit (Fig.1). The central copper(I) atom is coordinated by four phosphorus atoms from two dppp ligands. The strain of six-membered chelating ring is observed from the two low P—Cu—P bond angles of P1—Cu1—P2 = 99.18 (4)° and P3—Cu1—P4 = 98.34 (4)°, compared to the normal bond angle of 109°. The CuP₂C₃ skeleton is not planar because of the distorted tetrahedrally coordinated copper atom with the average Cu—P bond length of 2.3168 (11) Å, which is similar to that found in $[Cu(dppp)_2][ClO_4]$ (Xie *et al.*, 1997) and $[Cu(dppp)_2][BF_4]$ (Comba *et al.*, 1999). In the tetrahedral $[GaCl_4]^-$ anion, the average Ga—Cl bond length is 2.152 (2) Å and the average Cl —Ga—Cl bond angles is 109.45 (10)°, which are compared with those in the orthorhombic $[Bu_4N][GaCl_4]$ salt (av. Ga—Cl = 2.169 (2) Å and av. Cl—Ga—Cl = 109.9 (1)°) (Rudawska & Ptasiewicz-Bak, 2003).

Experimental

To a suspension of CuCl (75 mg, 0.75 mmol) in CH₃CN (10 mL) was added with the dppp (618 mg, 1.5 mmol) solution in CH₂Cl₂ (10 mL) and GaCl₃ (88 mg, 0.75 mmol). After the mixture was stirred for 6 h at room temperature, the colorless solution with a little white precipitate was obtained. After filtration, colorless block crystals were formed by the slow evaporation of the filtrate at room temperature in two days. Analysis, calculated $C_{54}H_{52}Cl_4P_4GaCu$: C 58.96, H 4.76%; found C 58.43, H 4.69%.

Refinement

H atoms were positioned and refined as riding atoms with C—H = 0.93–0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Computing details

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication:

SHELXTL (Sheldrick, 2008).

Figure 1

Perspective view of the title compound with displacement ellipsoids at the 50% probability level.

Bis[1,3-bis(diphenylphosphanyl)propane]copper(I) tetrachloridogallate(III)

Crystal data

[Cu(C₂₇H₂₆P₂₎₂][GaCl₄] $M_r = 1099.90$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 21.077 (4) Å b = 11.200 (2) Å c = 22.605 (5) Å $\beta = 99.424$ (3)° V = 5264.3 (18) Å³ Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\min} = 0.629, T_{\max} = 0.894$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.159$ S = 1.0412058 reflections 577 parameters 0 restraints F(000) = 2256 $D_x = 1.388 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2316 reflections $\theta = 2.3-26.6^{\circ}$ $\mu = 1.28 \text{ mm}^{-1}$ T = 296 KBlock, colorless $0.40 \times 0.25 \times 0.09 \text{ mm}$

32381 measured reflections 12058 independent reflections 6644 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -24 \rightarrow 27$ $k = -14 \rightarrow 14$ $l = -29 \rightarrow 15$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0702P)^{2}] \qquad \Delta \rho_{max} = 0.85 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.76 \text{ e } \text{\AA}^{-3}$ $(\Delta / \sigma)_{max} = 0.001$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates an	d isotropic or	equivalent isotrop	pic displacement	parameters	$(Å^2)$)
----------------------------------	----------------	--------------------	------------------	------------	---------	---

			_	IT */IT	
	X	<i>y</i>	Z	U _{iso} ·/U _{eq}	
Cul	0.26361 (2)	0.61161 (4)	0.99604 (2)	0.03896 (14)	
P1	0.20270 (4)	0.69588 (8)	0.91188 (5)	0.0413 (2)	
P2	0.19750 (5)	0.65483 (9)	1.06579 (5)	0.0460 (3)	
P3	0.36310 (5)	0.69750 (8)	1.02915 (5)	0.0450 (3)	
P4	0.29595 (5)	0.41400 (8)	0.99656 (5)	0.0428 (3)	
Ga2	0.49789 (3)	0.46820 (5)	0.29884 (3)	0.0752 (2)	
C11	0.47870 (13)	0.4662 (3)	0.38878 (12)	0.2017 (13)	
Cl2	0.59810 (7)	0.42905 (15)	0.30020 (7)	0.0989 (5)	
C13	0.48115 (8)	0.64747 (16)	0.26337 (13)	0.1572 (10)	
Cl4	0.43692 (9)	0.34578 (17)	0.24248 (12)	0.1529 (9)	
C1	0.15046 (19)	0.8150 (3)	0.93223 (19)	0.0516 (10)	
H1A	0.1772	0.8833	0.9458	0.062*	
H1B	0.1216	0.8391	0.8963	0.062*	
C2	0.11017 (18)	0.7853 (4)	0.98002 (19)	0.0547 (11)	
H2A	0.0916	0.7066	0.9719	0.066*	
H2B	0.0750	0.8420	0.9772	0.066*	
C3	0.1471 (2)	0.7874 (4)	1.0436 (2)	0.0599 (11)	
H3A	0.1165	0.7958	1.0710	0.072*	
H3B	0.1745	0.8575	1.0481	0.072*	
C4	0.41775 (18)	0.5977 (3)	1.0782 (2)	0.0574 (12)	
H4A	0.4604	0.6328	1.0849	0.069*	
H4B	0.4033	0.5924	1.1167	0.069*	
C5	0.42229 (18)	0.4713 (3)	1.0534 (2)	0.0580 (12)	
H5A	0.4607	0.4334	1.0748	0.070*	
H5B	0.4272	0.4769	1.0116	0.070*	
C6	0.36415 (18)	0.3912 (3)	1.05820 (18)	0.0505 (10)	
H6A	0.3498	0.4069	1.0961	0.061*	
H6B	0.3775	0.3083	1.0583	0.061*	
C11	0.24101 (18)	0.7707 (4)	0.85571 (18)	0.0496 (10)	
C12	0.2625 (2)	0.8883 (4)	0.8629 (2)	0.0743 (14)	
H12	0.2562	0.9303	0.8970	0.089*	
C13	0.2929 (3)	0.9441 (6)	0.8207 (3)	0.096 (2)	
H13	0.3054	1.0236	0.8257	0.115*	

C140.304 (3)0.8823 (7)0.7721 (4)0.104 (2)H140.32580.91930.74430.125*C150.2846 (2)0.7664 (6)0.7630 (2)0.0847 (16)H150.29230.72520.72920.102*C160.2532 (2)0.7110 (4)0.8047 (2)0.0611 (12)H160.23990.63220.79850.073*C210.14454 (17)0.5972 (3)0.86631 (17)0.0428 (9)C220.14099 (19)0.4790 (3)0.88233 (19)0.0518 (10)H220.16870.44930.91530.062*C230.0954 (2)0.4322 (4)0.8488 (2)0.0655 (13)H240.02530.32370.85990.079*C240.0555 (2)0.4459 (4)0.7834 (2)0.0668 (13)H250.03280.59300.74970.067*C260.1038 (18)0.6381 (4)0.81616 (18)0.0559 (11)H260.10560.71750.80470.067*C310.2376 (2)0.914 (4)1.14128 (19)0.0567 (11)C320.2286 (3)0.7988 (5)1.1707 (2)0.0942 (18)H330.25550.83341.24590.147*C340.3018 (4)0.7398 (7)1.2253 (3)0.115 (2)H340.32370.75641.23950.138*C350.3119 (3)0.6313 (6)1.2289 (2)0.0916 (18)H340.32940.57451.24930.110*C360.2799 (2)0.6066					
H14 0.2288 0.9193 0.7443 0.125^* C15 0.2284 0.7654 0.7650 0.0847 116 H15 0.2232 0.7252 0.7292 0.102^* C16 0.2532 0.7710 0.8047 0.0611 112 H16 0.2399 0.6322 0.7985 0.073^* C21 0.14454 17 0.5972 0.86631 177 0.0428 PC22 0.14099 0.4790 0.88233 199 0.0518 1092 C23 0.0954 0.4493 0.9153 0.062^* C23 0.0954 0.4492 0.8488 0.0655 131 H24 0.0555 0.34958 0.7781 0.8899 0.079^* C24 0.0555 0.5641 0.7834 20.0666 131 H25 0.0598 0.5641 0.7834 0.0666 131 H26 0.1038 0.5930 0.7497 0.080^* C26 0.10338 0.5930 0.7497 0.080^* C31 0.2376 0.5715 0.8047 0.678^* C31 0.2376 0.7175 0.8047 0.067^* C31 0.2376 0.7988 1.1707 0.0942 C33 0.2614 0.8213 0.177^* 0.113^* C34 0.3018 0.7398 1.2253 0.138^* C35 0.3194 0.2493 0.117^* 0.4493 C34 0.3184 0.7398 1.2253 0.138^* <tr< td=""><td>C14</td><td>0.3042 (3)</td><td>0.8823 (7)</td><td>0.7721 (4)</td><td>0.104 (2)</td></tr<>	C14	0.3042 (3)	0.8823 (7)	0.7721 (4)	0.104 (2)
C15 0.2846 (2) 0.7664 (6) 0.7630 (2) 0.0847 (16)H15 0.2292 0.7252 0.7292 0.1021 H16 0.2332 (2) 0.7110 (4) 0.8047 (2) 0.0611 (12)H16 0.2339 0.6322 0.7985 $0.073*$ C21 0.14454 (17) 0.5972 (3) 0.86631 (17) 0.0428 (9)C22 0.14099 (19) 0.4790 (3) 0.88233 (19) 0.0518 (10)H22 0.1687 0.4493 0.9153 $0.062*$ C23 0.0954 (2) 0.4032 (4) 0.8488 (2) 0.0655 (13)H23 0.0226 0.3237 0.8599 $0.079*$ C24 0.0555 (2) 0.5414 (4) 0.7834 (2) 0.0666 (13)H25 0.0328 0.5930 0.7497 $0.80*$ C25 0.0598 (2) 0.5641 (4) 0.7834 (2) $0.067*$ C31 0.2376 (2) 0.6914 (4) 1.14128 (19) $0.067*$ (13)C32 0.2286 (3) 0.7988 (5) 1.1707 (2) 0.0942 (18)H32 0.2001 0.8555 1.1517 $0.113*$ C33 0.2614 (4) 0.8213 (7) 1.2221 (3) 0.1122 (3)H34 0.3237 0.7594 1.2935 $0.138*$ C35 0.3119 (3) 0.6313 (6) 1.2289 (2) 0.0916 (18)H35 0.3394 0.5439 (4) 1.07994 (19) 0.0514 (10)C36 0.2799 (2) 0.6096 (4) 1.1717 (2) 0.649^{2} C36 0.2799 (3)<	H14	0.3258	0.9193	0.7443	0.125*
H15 0.2923 0.7252 0.7292 0.102* C16 0.2332 (2) 0.7110 (4) 0.8047 (2) 0.0611 (12) H16 0.2399 0.6322 0.7985 0.073* C21 0.14454 (17) 0.5972 (3) 0.86631 (17) 0.0428 (9) C22 0.1409 (19) 0.4790 (3) 0.8823 (19) 0.0518 (10) H22 0.1687 0.4493 0.9153 0.062* C23 0.0954 (2) 0.4032 (4) 0.8488 (2) 0.0655 (13) H24 0.0555 (2) 0.4595 (4) 0.8002 (2) 0.0666 (13) H24 0.0253 0.3958 0.7781 0.083* C25 0.0598 (2) 0.5641 (4) 0.7814 (2) 0.0666 (13) H26 0.1056 0.7175 0.8047 0.067* C31 0.2376 (2) 0.6914 (4) 1.14128 (19) 0.0557 (11) C32 0.2286 (3) 0.7988 (5) 1.1707 (2) 0.0942 (18) H32 0.2001 0.8555 1.1517 0.113* <td>C15</td> <td>0.2846 (2)</td> <td>0.7664 (6)</td> <td>0.7630(2)</td> <td>0.0847 (16)</td>	C15	0.2846 (2)	0.7664 (6)	0.7630(2)	0.0847 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H15	0.2923	0.7252	0.7292	0.102*
H16 0.2399 0.6322 0.7985 $0.073*$ C21 $0.14454 (17)$ $0.5972 (3)$ $0.86631 (17)$ $0.0428 (9)$ C22 $0.14099 (19)$ $0.4790 (3)$ $0.88233 (19)$ $0.0518 (10)$ H22 0.1687 0.4493 0.9153 $0.062*$ C23 $0.0954 (2)$ $0.4402 (4)$ $0.8488 (2)$ $0.0655 (13)$ H23 0.0926 0.3237 0.8599 $0.079*$ C24 $0.0555 (2)$ $0.4459 (4)$ $0.8002 (2)$ $0.0692 (13)$ H24 0.0253 0.3958 0.7781 $0.080*$ C25 $0.0598 (2)$ $0.5641 (4)$ $0.81616 (18)$ $0.0559 (11)$ H26 0.1056 0.7175 0.8047 0.067^* C31 $0.2376 (2)$ $0.6914 (4)$ $1.14128 (19)$ $0.0567 (11)$ H32 0.2001 0.8555 1.1517 $0.113*$ C33 $0.2614 (4)$ $0.8213 (7)$ $1.2253 (3)$ $0.115 (2)$ H34 0.3237 0.7564 1.2935 $0.137*$ C34 $0.3018 (4)$ $0.7398 (7)$ $1.2553 (3)$ $0.115 (2)$ H34 0.3237 0.5745 1.2493 $0.110*$ C36 $0.2799 (2)$ $0.6096 (4)$ $1.1717 (2)$ $0.0942 (18)$ H35 0.3194 0.5745 1.2493 $0.110*$ C36 $0.2799 (2)$ $0.6096 (4)$ $1.1717 (2)$ $0.0949 (12)$ H34 0.3027 0.5380 1.1531 $0.078*$ C41 $0.13728 (18)$ 0.5745 1.2493 0	C16	0.2532 (2)	0.7110 (4)	0.8047 (2)	0.0611 (12)
C21 $0.14454 (17)$ $0.5972 (3)$ $0.86631 (17)$ $0.0428 (9)$ C22 $0.14099 (19)$ $0.4790 (3)$ $0.88233 (19)$ $0.0518 (10)$ H22 0.1687 0.4493 0.9153 $0.062*$ C23 $0.0926 (2)$ $0.432 (4)$ $0.8488 (2)$ $0.0655 (13)$ H23 $0.0926 (2)$ $0.4459 (4)$ $0.8002 (2)$ $0.0692 (13)$ H24 $0.0555 (2)$ $0.4459 (4)$ $0.8002 (2)$ $0.0666 (13)$ H25 $0.0328 (2)$ $0.5641 (4)$ $0.7834 (2)$ $0.0666 (13)$ H25 $0.0328 (2)$ $0.5641 (4)$ $0.8047 (2)$ $0.0557 (1)$ C26 $0.10338 (18)$ $0.6381 (4)$ $0.8161 (6) (18) (2) (2) (2) (11)$ H26 $0.1056 (2) (715 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)$	H16	0.2399	0.6322	0.7985	0.073*
C22 $0.14099 (19)$ $0.4790 (3)$ $0.88233 (19)$ $0.0518 (10)$ H22 0.1687 0.4493 0.9153 $0.062*$ C23 $0.0954 (2)$ $0.4032 (4)$ $0.8488 (2)$ $0.0655 (13)$ H23 0.0926 0.3237 0.8599 $0.079*$ C24 $0.0555 (2)$ $0.4459 (4)$ $0.8002 (2)$ $0.0692 (13)$ H24 0.0233 0.3958 0.7781 $0.068*$ C25 $0.0598 (2)$ $0.5641 (4)$ $0.7834 (2)$ $0.0666 (13)$ H25 0.0328 0.5930 0.7497 $0.060*$ C26 $0.10338 (18)$ $0.6381 (4)$ $0.81616 (18)$ $0.0559 (11)$ H26 0.1056 0.7175 0.8047 $0.0667 (11)$ C31 $0.2376 (2)$ $0.6914 (4)$ $1.14128 (19)$ $0.0567 (11)$ C32 $0.2286 (3)$ $0.7988 (5)$ $1.1707 (2)$ $0.9942 (18)$ H32 0.2001 0.8555 1.1517 $0.113*$ C33 $0.2614 (4)$ $0.8213 (7)$ $1.2253 (3)$ $0.115 (2)$ H34 0.3237 0.7564 1.2945 $0.138*$ C34 $0.3018 (4)$ $0.7398 (7)$ $1.2553 (3)$ $0.115 (2)$ H34 0.3237 0.5380 1.1331 $0.078*$ C41 $0.3192 (3)$ $0.6313 (6)$ $1.2289 (2)$ $0.9016 (18)$ H35 0.3394 $0.5436 (1)$ $1.1367 (2)$ $0.0768 (15)$ H42 0.1460 0.5606 1.1698 $0.992*$ C44 $0.0448 (2)$ $0.3763 (5)$	C21	0.14454 (17)	0.5972 (3)	0.86631 (17)	0.0428 (9)
H22 0.1687 0.4493 0.9153 0.062^* C23 0.0954 (2) 0.4032 (4) 0.8488 (2) 0.0655 (13)H23 0.0926 0.3237 0.8599 0.079^* C24 0.0555 (2) 0.4459 (4) 0.8002 (2) 0.06692 (13)H24 0.0253 0.3958 0.7781 0.080^* C25 0.0598 (2) 0.5641 (4) 0.7834 (2) 0.0666 (13)H25 0.0328 0.5930 0.7497 0.080^* C26 0.10338 (18) 0.6381 (4) 0.81616 (18) 0.0559 (11)H26 0.1056 0.7175 0.8047 0.067^* C31 0.2376 (2) 0.6914 (4) 1.14128 (19) 0.0567 (11)C32 0.2286 (3) 0.7988 (5) 1.1707 (2) 0.0942 (18)H32 0.2001 0.8555 1.1517 0.113^* C33 0.2614 (4) 0.8213 (7) 1.22513 (3) 0.115 (2)H34 0.3237 0.7564 1.2935 0.138^* C35 0.3119 (3) 0.6313 (6) 1.2289 (2) 0.0916 (18)H35 0.3394 0.5745 1.2493 0.110^* C36 0.2799 (2) 0.6096 (4) 1.1717 (2) 0.0649 (12)H36 0.2870 0.5380 1.1531 0.078^* C41 0.13728 (18) 0.5439 (4) 1.07994 (19) 0.0514 (10)C42 0.1640 0.5606 1.1698 0.092^* C43 0.0779 (3) 0.4342 (6) 1.14	C22	0.14099 (19)	0.4790 (3)	0.88233 (19)	0.0518 (10)
C23 0.0954 (2) 0.4032 (4) 0.8488 (2) 0.0655 (13)H23 0.0926 0.3237 0.8599 $0.079*$ C24 0.0555 (2) 0.4459 (4) 0.8002 (2) 0.0692 (13)H24 0.0253 0.3958 0.7781 $0.083*$ C25 0.0598 (2) 0.5641 (4) 0.7834 (2) 0.0666 (13)H25 0.0328 0.5930 0.7497 $0.067*$ C26 0.1038 (18) 0.6381 (4) 0.81616 (18) 0.0559 (11)H26 0.1056 0.7175 0.8047 $0.067*$ C31 0.2376 (2) 0.6914 (4) 1.14128 (19) 0.0567 (11)C32 0.2286 (3) 0.7988 (5) 1.1707 (2) 0.0422 (18)H32 0.2001 0.8555 1.1517 $0.113*$ C33 0.2614 (4) 0.8213 (7) 1.2553 (3) 0.115 (2)H33 0.2555 0.8934 1.2459 $0.147*$ C34 0.3018 (4) 0.7398 (7) 1.2533 (3) 0.115 (2)H34 0.3237 0.7564 1.2935 $0.138*$ C35 0.3119 (3) 0.6513 (6) 1.2493 $0.110*$ C36 0.2799 (2) 0.6096 (4) 1.1717 (2) 0.0649 (12)H35 0.3394 0.5745 1.2493 $0.110*$ C41 0.1232 (18) 0.5439 (4) 1.07994 (19) 0.0514 (10)C42 0.1243 (2) 0.5200 (5) 1.1367 (2) 0.0769 (15)H42 0.1460 1.6066 1.6	H22	0.1687	0.4493	0.9153	0.062*
H23 0.0926 0.3237 0.8599 $0.079*$ C24 0.0555 (2) 0.4459 (4) 0.8002 (2) 0.0662 (13)H24 0.0253 0.3958 0.7781 $0.083*$ C25 0.0598 (2) 0.5641 (4) 0.7181 $0.080*$ C26 0.10338 (18) 0.6381 (4) 0.81616 (18) 0.0559 (1)H26 0.1056 0.7175 0.8047 $0.067*$ C31 0.2376 (2) 0.6914 (4) 1.14128 (19) 0.0557 (11)C32 0.2286 (3) 0.7988 (5) 1.1707 (2) 0.0942 (18)H32 0.2011 0.8555 1.1517 $0.113*$ C33 0.2614 (4) 0.8213 (7) 1.2271 (3) 0.122 (3)H33 0.2555 0.8934 1.2459 $0.147*$ C34 0.3018 (4) 0.7398 (7) 1.2553 (3) 0.115 (2)H34 0.3237 0.7564 1.2395 $0.138*$ C35 0.319 (3) 0.6313 (6) 1.2289 (2) 0.0946 (12)H36 0.2870 0.5380 1.1511 $0.078*$ C41 0.13728 (18) 0.5439 (4) 1.0794 (19) 0.0514 (10)C42 0.1243 (2) 0.5066 1.1436 (3) 0.099 (2)H43 0.0699 0.4167 1.1819 $0.119*$ C44 0.0448 (2) 0.3763 (5) 1.0965 (3) 0.0754 (14)H44 0.0141 0.3196 1.0023 $0.0048*$ C46 0.1030 (2) 0.4834 (4) 1.0320 (2) <t< td=""><td>C23</td><td>0.0954 (2)</td><td>0.4032 (4)</td><td>0.8488 (2)</td><td>0.0655 (13)</td></t<>	C23	0.0954 (2)	0.4032 (4)	0.8488 (2)	0.0655 (13)
C24 0.0555 (2) 0.4459 (4) 0.8002 (2) 0.0692 (13)H24 0.0253 0.3958 0.7781 $0.083*$ C25 0.0598 (2) 0.5641 (4) 0.7834 (2) 0.0666 (13)H25 0.0328 0.5930 0.7497 $0.080*$ C26 0.10338 (18) 0.6381 (4) 0.81616 (18) 0.0559 (11)H26 0.1056 0.7175 0.8047 $0.067*$ C31 0.2376 (2) 0.6914 (4) 1.14128 (19) 0.0577 (11)C32 0.2286 (3) 0.7988 (5) 1.1707 (2) 0.0942 (18)H32 0.2010 0.8555 1.1517 $0.113*$ C33 0.2614 (4) 0.8213 (7) 1.2271 (3) 0.122 (3)H33 0.2555 0.8934 1.2459 $0.147*$ C34 0.3018 (4) 0.7398 (7) 1.2553 (3) 0.115 (2)H34 0.3237 0.7564 1.2935 $0.138*$ C35 0.319 (3) 0.6313 (6) 1.2289 (2) 0.0916 (18)H35 0.3394 0.5745 1.2493 $0.110*$ C36 0.2799 (2) 0.6096 (4) 1.1717 (2) 0.0649 (12)H36 0.2870 0.5380 1.1531 $0.078*$ C41 0.13728 (18) 0.5439 (4) 1.07994 (19) 0.0514 (10)C42 0.1243 (2) 0.5763 (5) 1.0965 (3) 0.0924 C43 0.0779 (3) 0.4342 (6) 1.1367 (2) 0.0758 (11)H44 0.0141 0.3196 <td< td=""><td>H23</td><td>0.0926</td><td>0.3237</td><td>0.8599</td><td>0.079*</td></td<>	H23	0.0926	0.3237	0.8599	0.079*
H24 0.0253 0.3958 0.7781 0.083^* C25 0.0598 (2) 0.5641 (4) 0.7854 (2) 0.0666 (13)H25 0.0328 0.5930 0.7497 0.060^* C26 0.10338 (18) 0.6381 (4) 0.81616 (18) 0.0559 (11)H26 0.1056 0.7175 0.8047 0.067^* C31 0.2376 (2) 0.6914 (4) 1.14128 (19) 0.0567 (11)C32 0.2286 (3) 0.7988 (5) 1.1707 (2) 0.0942 (18)H32 0.2001 0.8555 1.1517 0.113^* C33 0.2614 (4) 0.8213 (7) 1.2271 (3) 0.122 (3)H33 0.2555 0.8934 1.2459 0.147^* C34 0.3018 (4) 0.7398 (7) 1.2553 (3) 0.115 (2)H34 0.3237 0.7564 1.2935 0.138^* C35 0.3119 (3) 0.6313 (6) 1.2289 (2) 0.0916 (18)H35 0.3394 0.5745 1.2493 0.110^* C36 0.2799 (2) 0.6096 (4) 1.1717 (2) 0.0649 (12)H36 0.2870 0.5380 1.1531 0.078^* C41 0.1728 (18) 0.5439 (4) 1.07994 (19) 0.0514 (10)C42 0.1460 0.5606 1.1698 0.092^* C43 0.0797 (3) 0.4342 (6) 1.1436 (3) 0.099 (2)H43 0.0699 0.4167 1.1819 0.104^* C44 0.0448 (2) 0.3763 (5) 1.0965 (3)	C24	0.0555 (2)	0.4459 (4)	0.8002 (2)	0.0692 (13)
C25 0.0598 (2) 0.5641 (4) 0.7834 (2) 0.0666 (13)H25 0.0328 0.5930 0.7497 0.080^* C26 0.1038 (18) 0.6381 (4) 0.81616 (18) 0.0559 (11)H26 0.1056 0.7175 0.8047 0.067^* C31 0.2376 (2) 0.6914 (4) 1.14128 (19) 0.0567 (11)C32 0.2286 (3) 0.7988 (5) 1.1707 (2) 0.0942 (18)H32 0.2001 0.8555 1.1517 0.113^* C33 0.2614 (4) 0.8213 (7) 1.2271 (3) 0.122 (3)H33 0.2555 0.8934 1.2459 0.147^* C34 0.3018 (4) 0.7398 (7) 1.2553 (3) 0.115 (2)H34 0.3237 0.7564 1.2935 0.138^* C35 0.3119 (3) 0.6313 (6) 1.2289 (2) 0.0916 (18)H35 0.3394 0.5745 1.2493 0.110^* C36 0.2799 (2) 0.6096 (4) 1.1717 (2) 0.0649 (12)H36 0.2870 0.5380 1.1531 0.078^* C41 0.13728 (18) 0.5439 (4) 1.07994 (19) 0.0514 (10)C42 0.1240 0.5066 1.1698 0.092^* C43 0.0779 (3) 0.4342 (6) 1.1436 (3) 0.0994 (15)H44 0.0448 (2) 0.3763 (5) 1.0965 (3) 0.0868 (17)H45 0.0326 0.3619 1.0073 0.088^* C46 0.1030 (2) 0.4834 (4) <td>H24</td> <td>0.0253</td> <td>0.3958</td> <td>0.7781</td> <td>0.083*</td>	H24	0.0253	0.3958	0.7781	0.083*
H25 0.0328 0.5930 0.7497 0.080^* C26 $0.10338 (18)$ $0.6381 (4)$ $0.81616 (18)$ $0.0559 (11)$ H26 0.1056 0.7175 0.8047 0.067^* C31 $0.2376 (2)$ $0.6914 (4)$ $1.14128 (19)$ $0.0567 (11)$ C32 $0.2286 (3)$ $0.7988 (5)$ $1.1707 (2)$ $0.0942 (18)$ H32 0.2001 0.8555 1.1517 0.113^* C33 $0.2614 (4)$ $0.8213 (7)$ $1.2271 (3)$ $0.122 (3)$ H33 0.2555 0.8934 1.2459 0.147^* C34 $0.3018 (4)$ $0.7398 (7)$ $1.2553 (3)$ $0.115 (2)$ H34 0.3237 0.7564 1.2935 0.138^* C35 $0.3119 (3)$ $0.6313 (6)$ $1.2289 (2)$ $0.0916 (18)$ H35 0.3394 0.5745 1.2493 0.110^* C36 $0.2799 (2)$ $0.6096 (4)$ $1.1717 (2)$ $0.0649 (12)$ H36 0.2870 0.5380 1.1531 0.078^* C41 $0.13728 (18)$ $0.5439 (4)$ $1.07994 (19)$ $0.0514 (10)$ C42 $0.1243 (2)$ $0.5200 (5)$ $1.1367 (2)$ $0.0769 (15)$ H42 0.1460 0.5606 1.1698 0.092^* C43 $0.0779 (3)$ $0.4342 (6)$ $1.1436 (3)$ $0.099 (2)$ H43 0.0669 0.4167 1.1819 0.119^* C44 $0.0448 (2)$ $0.3763 (5)$ $1.0965 (3)$ $0.0865 (17)$ H44 0.0141 0.3196 $1.$	C25	0.0598 (2)	0.5641 (4)	0.7834 (2)	0.0666 (13)
C260.10338 (18)0.6381 (4)0.81616 (18)0.0559 (11)H260.10560.71750.80470.067*C310.2376 (2)0.6914 (4)1.14128 (19)0.0567 (11)C320.2286 (3)0.7988 (5)1.1707 (2)0.0942 (18)H320.20010.85551.15170.113*C330.2614 (4)0.8213 (7)1.2271 (3)0.122 (3)H330.25550.89341.24590.147*C340.3018 (4)0.7398 (7)1.2553 (3)0.115 (2)H340.32370.75641.29350.138*C350.3119 (3)0.6313 (6)1.2289 (2)0.0916 (18)H350.33940.57451.24930.110*C360.2799 (2)0.6096 (4)1.1717 (2)0.0649 (12)H360.28700.53801.15310.078*C410.13728 (18)0.5439 (4)1.07994 (19)0.0514 (10)C420.1243 (2)0.5200 (5)1.1367 (2)0.0769 (15)H420.14600.56061.16980.092*C430.0779 (3)0.4342 (6)1.1436 (3)0.099 (2)H430.06990.41671.18190.119*C440.0448 (2)0.3763 (5)1.0965 (3)0.088*C460.1030 (2)0.4342 (4)1.00230.0744 (14)H450.03260.36191.00730.088*C460.1030 (2)0.4342 (3)1.07411 (19)0.0499 (10)C520.3953 (2) <t< td=""><td>H25</td><td>0.0328</td><td>0.5930</td><td>0.7497</td><td>0.080*</td></t<>	H25	0.0328	0.5930	0.7497	0.080*
H260.10560.71750.80470.067*C310.2376 (2)0.6914 (4)1.14128 (19)0.0567 (11)C320.2286 (3)0.7988 (5)1.1707 (2)0.0942 (18)H320.20010.85551.15170.113*C330.2614 (4)0.8213 (7)1.2271 (3)0.122 (3)H330.25550.89341.24590.147*C340.3018 (4)0.7398 (7)1.2553 (3)0.115 (2)H340.32370.75641.29350.138*C350.3119 (3)0.6313 (6)1.2289 (2)0.0916 (18)H350.33940.57451.24930.110*C360.2799 (2)0.6096 (4)1.1717 (2)0.0649 (12)H360.28700.53801.15310.078*C410.13728 (18)0.5439 (4)1.07994 (19)0.0514 (10)C420.1243 (2)0.5200 (5)1.1367 (2)0.0769 (15)H420.14600.56061.16980.092*C430.06990.41671.18190.119*C440.0448 (2)0.3763 (5)1.0965 (3)0.0865 (17)H440.01410.31961.10230.104*C450.0561 (2)0.4005 (4)1.0402 (3)0.0734 (14)H450.03260.36191.00730.088*C460.1130 (2)0.4834 (4)1.0320 (2)0.0598 (11)H460.11130.49830.99360.072*C510.36291 (18)0.8328 (3)1.0741	C26	0.10338 (18)	0.6381 (4)	0.81616 (18)	0.0559 (11)
C31 0.2376 (2) 0.6914 (4) 1.14128 (19) 0.0567 (11)C32 0.2286 (3) 0.7988 (5) 1.1707 (2) 0.0942 (18)H32 0.2001 0.8555 1.1517 $0.113*$ C33 0.2614 (4) 0.8213 (7) 1.2271 (3) 0.122 (3)H33 0.2555 0.8934 1.2459 $0.147*$ C34 0.3018 (4) 0.7398 (7) 1.2553 (3) 0.115 (2)H34 0.3237 0.7564 1.2935 $0.138*$ C35 0.3119 (3) 0.6313 (6) 1.2289 (2) 0.0916 (18)H35 0.3394 0.5745 1.2493 $0.110*$ C36 0.2799 (2) 0.6096 (4) 1.1717 (2) 0.0649 (12)H36 0.2870 0.5380 1.1531 $0.078*$ C41 0.13728 (18) 0.5439 (4) 1.07994 (19) 0.0514 (10)C42 0.1243 (2) 0.5200 (5) 1.1367 (2) 0.0769 (15)H42 0.1460 0.5606 1.1698 $0.092*$ C43 0.0779 (3) 0.4342 (6) 1.1436 (3) 0.099 (2)H43 0.0699 0.4167 1.1819 $0.119*$ C44 0.0448 (2) 0.3763 (5) 1.0965 (3) 0.0685 (17)H44 0.0141 0.3196 1.0023 $0.104*$ C45 0.0561 (2) 0.4005 (4) 1.0402 (3) 0.0734 (14)H45 0.0326 0.3619 1.0073 $0.088*$ C46 0.1030 (2) 0.8328 (3) 1.07411	H26	0.1056	0.7175	0.8047	0.067*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C31	0.2376 (2)	0.6914 (4)	1.14128 (19)	0.0567 (11)
H320.20010.85551.15170.113*C330.2614 (4)0.8213 (7)1.2271 (3)0.122 (3)H330.25550.89341.24590.147*C340.3018 (4)0.7398 (7)1.2553 (3)0.115 (2)H340.32370.75641.29350.138*C350.3119 (3)0.6313 (6)1.2289 (2)0.0916 (18)H350.33940.57451.24930.110*C360.2799 (2)0.6096 (4)1.1717 (2)0.0649 (12)H360.28700.53801.15310.078*C410.13728 (18)0.5439 (4)1.07994 (19)0.0514 (10)C420.1243 (2)0.5200 (5)1.1367 (2)0.0769 (15)H420.14600.56061.16980.092*C430.0779 (3)0.4342 (6)1.18190.119*C440.0448 (2)0.3763 (5)1.0965 (3)0.0865 (17)H440.01410.31961.10230.104*C450.0561 (2)0.4005 (4)1.0402 (3)0.0734 (14)H450.03260.36191.00730.088*C460.1030 (2)0.4832 (3)1.07411 (19)0.0499 (10)C520.3953 (2)0.8472 (4)1.1319 (2)0.0687 (13)H520.42020.78531.15070.082*C530.3906 (2)0.9544 (4)1.1619 (2)0.0781 (15)H530.41230.96281.20090.094*C540.35231.11781.1566 </td <td>C32</td> <td>0.2286 (3)</td> <td>0.7988 (5)</td> <td>1.1707 (2)</td> <td>0.0942 (18)</td>	C32	0.2286 (3)	0.7988 (5)	1.1707 (2)	0.0942 (18)
C33 $0.2614 (4)$ $0.8213 (7)$ $1.2271 (3)$ $0.122 (3)$ H33 0.2555 0.8934 1.2459 0.147^* C34 $0.3018 (4)$ $0.7398 (7)$ $1.2553 (3)$ $0.115 (2)$ H34 0.3237 0.7564 1.2935 0.138^* C35 $0.3119 (3)$ $0.6313 (6)$ $1.2289 (2)$ $0.0916 (18)$ H35 0.3394 0.5745 1.2493 0.110^* C36 $0.2799 (2)$ $0.6096 (4)$ $1.1717 (2)$ $0.0649 (12)$ H36 0.2870 0.5380 1.1531 0.078^* C41 $0.13728 (18)$ $0.5439 (4)$ $1.07994 (19)$ $0.0514 (10)$ C42 $0.1243 (2)$ $0.5200 (5)$ $1.1367 (2)$ $0.0769 (15)$ H42 0.1460 0.5606 1.1698 0.092^* C43 $0.0779 (3)$ $0.4342 (6)$ $1.1436 (3)$ $0.099 (2)$ H43 0.0699 0.4167 1.1819 0.119^* C44 $0.0448 (2)$ $0.3763 (5)$ $1.0965 (3)$ $0.0865 (17)$ H44 0.0141 0.3196 1.1023 0.104^* C45 $0.0561 (2)$ $0.4005 (4)$ $1.0402 (3)$ $0.0734 (14)$ H45 0.0326 0.3619 1.0073 0.088^* C46 $0.1030 (2)$ $0.8472 (4)$ $1.1319 (2)$ $0.0687 (13)$ H52 0.4202 0.7853 1.1507 0.082^* C53 $0.3906 (2)$ $0.9544 (4)$ $1.1619 (2)$ $0.0781 (15)$ H53 0.4123 0.9628 1.2009 <	H32	0.2001	0.8555	1.1517	0.113*
H33 0.2555 0.8934 1.2459 0.147^* C34 0.3018 (4) 0.7398 (7) 1.2553 (3) 0.115 (2)H34 0.3237 0.7564 1.2935 0.138^* C35 0.3119 (3) 0.6313 (6) 1.2289 (2) 0.0916 (18)H35 0.3394 0.5745 1.2493 0.110^* C36 0.2799 (2) 0.6096 (4) 1.1717 (2) 0.0649 (12)H36 0.2870 0.5380 1.1531 0.078^* C41 0.13728 (18) 0.5439 (4) 1.07994 (19) 0.0514 (10)C42 0.1243 (2) 0.5200 (5) 1.1367 (2) 0.0769 (15)H42 0.1460 0.5606 1.1698 0.092^* C43 0.0779 (3) 0.4342 (6) 1.1436 (3) 0.099 (2)H43 0.0699 0.4167 1.1819 0.119^* C44 0.0448 (2) 0.3763 (5) 1.0965 (3) 0.0865 (17)H44 0.0141 0.3196 1.1023 0.104^* C45 0.0561 (2) 0.4005 (4) 1.0402 (3) 0.0734 (14)H45 0.0326 0.3619 1.0073 0.088^* C46 0.1030 (2) 0.4834 (4) 1.0320 (2) 0.0598 (11)H46 0.1113 0.4983 0.9936 0.072^* C51 0.36291 (18) 0.8328 (3) 1.07411 (19) 0.0499 (10)C52 0.3953 (2) 0.9544 (4) 1.1619 (2) 0.0687 (13)H52 0.4202 0.7853 $1.$	C33	0.2614 (4)	0.8213 (7)	1.2271 (3)	0.122 (3)
C340.3018 (4)0.7398 (7)1.2553 (3)0.115 (2)H340.32370.75641.29350.138*C350.3119 (3)0.6313 (6)1.2289 (2)0.0916 (18)H350.33940.57451.24930.110*C360.2799 (2)0.6096 (4)1.1717 (2)0.0649 (12)H360.28700.53801.15310.078*C410.13728 (18)0.5439 (4)1.07994 (19)0.0514 (10)C420.1243 (2)0.5200 (5)1.1367 (2)0.0769 (15)H420.14600.56061.16980.092*C430.0779 (3)0.4342 (6)1.1436 (3)0.099 (2)H430.66990.41671.18190.119*C440.0448 (2)0.3763 (5)1.0965 (3)0.0865 (17)H440.01410.31961.10230.104*C450.0561 (2)0.4005 (4)1.0402 (3)0.0734 (14)H450.03260.36191.00730.088*C460.1030 (2)0.4834 (4)1.0320 (2)0.0598 (11)H460.11130.49830.99360.072*C510.36291 (18)0.8328 (3)1.07411 (19)0.0499 (10)C520.3953 (2)0.8472 (4)1.1319 (2)0.0687 (13)H520.42020.78531.15070.082*C530.3906 (2)0.9544 (4)1.1619 (2)0.0781 (15)H530.41230.96281.20090.094*C540.3552 (2)1.0470 (H33	0.2555	0.8934	1.2459	0.147*
H34 0.3237 0.7564 1.2935 0.138^* C35 $0.3119 (3)$ $0.6313 (6)$ $1.2289 (2)$ $0.0916 (18)$ H35 0.3394 0.5745 1.2493 0.110^* C36 $0.2799 (2)$ $0.6096 (4)$ $1.1717 (2)$ $0.0649 (12)$ H36 0.2870 0.5380 1.1531 0.078^* C41 $0.13728 (18)$ $0.5439 (4)$ $1.07994 (19)$ $0.0514 (10)$ C42 $0.1243 (2)$ $0.5200 (5)$ $1.1367 (2)$ $0.0769 (15)$ H42 0.1460 0.5606 1.1698 0.092^* C43 $0.0779 (3)$ $0.4342 (6)$ $1.1436 (3)$ $0.099 (2)$ H43 0.0699 0.4167 1.1819 0.119^* C44 $0.0448 (2)$ $0.3763 (5)$ $1.0965 (3)$ $0.0865 (17)$ H44 0.0141 0.3196 1.1023 0.104^* C45 $0.0561 (2)$ $0.4005 (4)$ $1.0402 (3)$ $0.0734 (14)$ H45 0.0326 0.3619 1.0073 0.088^* C46 $0.1030 (2)$ $0.4834 (4)$ $1.0320 (2)$ $0.0598 (11)$ H46 0.1113 0.4983 0.9936 0.072^* C51 $0.36291 (18)$ $0.8328 (3)$ $1.07411 (19)$ $0.0499 (10)$ C52 $0.3953 (2)$ $0.8472 (4)$ $1.1319 (2)$ $0.0687 (13)$ H52 0.4202 0.7853 1.1507 0.082^* C53 $0.3906 (2)$ $0.9544 (4)$ $1.1619 (2)$ $0.0781 (15)$ H53 0.4123 0.9628	C34	0.3018 (4)	0.7398 (7)	1.2553 (3)	0.115 (2)
C35 $0.3119 (3)$ $0.6313 (6)$ $1.2289 (2)$ $0.0916 (18)$ H35 0.3394 0.5745 1.2493 0.110^* C36 $0.2799 (2)$ $0.6096 (4)$ $1.1717 (2)$ $0.0649 (12)$ H36 0.2870 0.5380 1.1531 0.078^* C41 $0.13728 (18)$ $0.5439 (4)$ $1.07994 (19)$ $0.0514 (10)$ C42 $0.1243 (2)$ $0.5200 (5)$ $1.1367 (2)$ $0.0769 (15)$ H42 0.1460 0.5606 1.1698 0.092^* C43 $0.0779 (3)$ $0.4342 (6)$ $1.1436 (3)$ $0.099 (2)$ H43 0.0699 0.4167 1.1819 0.119^* C44 $0.0448 (2)$ $0.3763 (5)$ $1.0965 (3)$ $0.0865 (17)$ H44 0.0141 0.3196 1.1023 0.104^* C45 $0.0561 (2)$ $0.4005 (4)$ $1.0402 (3)$ $0.0734 (14)$ H45 0.0326 0.3619 1.0073 0.088^* C46 $0.1030 (2)$ $0.4832 (3)$ $1.07411 (19)$ $0.0499 (10)$ C52 $0.3953 (2)$ $0.8472 (4)$ $1.1319 (2)$ $0.0687 (13)$ H52 0.4202 0.7853 1.1507 0.082^* C53 $0.3906 (2)$ $0.9544 (4)$ $1.1619 (2)$ $0.0781 (15)$ H53 0.4123 0.9628 1.2009 0.094^* C54 0.3523 1.1178 1.1566 0.092^* C55 $0.3237 (2)$ $1.0344 (4)$ $1.0779 (3)$ $0.0794 (15)$ H54 0.3523 1.1077 $1.$	H34	0.3237	0.7564	1.2935	0.138*
H35 0.3394 0.5745 1.2493 0.110^* C36 $0.2799 (2)$ $0.6096 (4)$ $1.1717 (2)$ $0.0649 (12)$ H36 0.2870 0.5380 1.1531 0.078^* C41 $0.13728 (18)$ $0.5439 (4)$ $1.07994 (19)$ $0.0514 (10)$ C42 $0.1243 (2)$ $0.5200 (5)$ $1.1367 (2)$ $0.0769 (15)$ H42 0.1460 0.5606 1.1698 0.092^* C43 $0.0779 (3)$ $0.4342 (6)$ $1.1436 (3)$ $0.099 (2)$ H43 0.0699 0.4167 1.1819 0.119^* C44 $0.0448 (2)$ $0.3763 (5)$ $1.0965 (3)$ $0.0865 (17)$ H44 0.0141 0.3196 1.1023 0.104^* C45 $0.0561 (2)$ $0.4005 (4)$ $1.0402 (3)$ $0.0734 (14)$ H45 0.0326 0.3619 1.0073 0.088^* C46 $0.1030 (2)$ $0.4834 (4)$ $1.0320 (2)$ $0.0598 (11)$ H46 0.1113 0.4983 0.9936 0.072^* C51 $0.36291 (18)$ $0.8328 (3)$ $1.07411 (19)$ $0.0499 (10)$ C52 $0.3953 (2)$ $0.9544 (4)$ $1.1319 (2)$ $0.0687 (13)$ H52 0.4202 0.7853 1.1507 0.082^* C53 $0.3906 (2)$ $0.9544 (4)$ $1.1619 (2)$ $0.0781 (15)$ H53 0.4123 0.9628 1.2009 0.094^* C54 0.3523 1.1178 1.1566 0.092^* C55 $0.3237 (2)$ $1.0344 (4)$ $1.0779 ($	C35	0.3119 (3)	0.6313 (6)	1.2289 (2)	0.0916 (18)
C36 $0.2799 (2)$ $0.6096 (4)$ $1.1717 (2)$ $0.0649 (12)$ H36 0.2870 0.5380 1.1531 $0.078*$ C41 $0.13728 (18)$ $0.5439 (4)$ $1.07994 (19)$ $0.0514 (10)$ C42 $0.1243 (2)$ $0.5200 (5)$ $1.1367 (2)$ $0.0769 (15)$ H42 0.1460 0.5606 1.1698 $0.092*$ C43 $0.0779 (3)$ $0.4342 (6)$ $1.1436 (3)$ $0.099 (2)$ H43 0.0699 0.4167 1.1819 $0.119*$ C44 $0.0448 (2)$ $0.3763 (5)$ $1.0965 (3)$ $0.0865 (17)$ H44 0.0141 0.3196 1.1023 $0.104*$ C45 $0.0561 (2)$ $0.4005 (4)$ $1.0402 (3)$ $0.0734 (14)$ H45 0.0326 0.3619 1.0073 $0.088*$ C46 $0.1030 (2)$ $0.4834 (4)$ $1.0320 (2)$ $0.0598 (11)$ H46 0.1113 0.4983 0.9936 $0.072*$ C51 $0.36291 (18)$ $0.8328 (3)$ $1.07411 (19)$ $0.0499 (10)$ C52 $0.3953 (2)$ $0.9544 (4)$ $1.1619 (2)$ $0.0781 (15)$ H53 0.4123 0.9628 1.2009 $0.094*$ C54 $0.3523 (2)$ $1.0470 (4)$ $1.1357 (3)$ $0.0768 (15)$ H54 $0.3523 (2)$ 1.0977 1.0592 $0.095*$ C55 $0.3237 (2)$ $1.0941 (4)$ $1.0473 (2)$ $0.0633 (12)$	H35	0.3394	0.5745	1.2493	0.110*
H360.28700.53801.15310.078*C410.13728 (18)0.5439 (4)1.07994 (19)0.0514 (10)C420.1243 (2)0.5200 (5)1.1367 (2)0.0769 (15)H420.14600.56061.16980.092*C430.0779 (3)0.4342 (6)1.1436 (3)0.099 (2)H430.06990.41671.18190.119*C440.0448 (2)0.3763 (5)1.0965 (3)0.0865 (17)H440.01410.31961.10230.104*C450.0561 (2)0.4005 (4)1.0402 (3)0.0734 (14)H450.03260.36191.00730.088*C460.1030 (2)0.4834 (4)1.0320 (2)0.0598 (11)H460.11130.49830.99360.072*C510.36291 (18)0.8328 (3)1.07411 (19)0.0499 (10)C520.3953 (2)0.9544 (4)1.1619 (2)0.0781 (15)H530.41230.96281.20090.094*C540.3552 (2)1.0470 (4)1.1357 (3)0.0768 (15)H540.35231.11781.15660.092*C550.3237 (2)1.0344 (4)1.0779 (3)0.0794 (15)H550.29981.09771.05920.095*C560.3272 (2)0.9281 (4)1.0473 (2)0.0633 (12)	C36	0.2799 (2)	0.6096 (4)	1.1717 (2)	0.0649 (12)
C41 $0.13728 (18)$ $0.5439 (4)$ $1.07994 (19)$ $0.0514 (10)$ C42 $0.1243 (2)$ $0.5200 (5)$ $1.1367 (2)$ $0.0769 (15)$ H42 0.1460 0.5606 1.1698 0.092^* C43 $0.0779 (3)$ $0.4342 (6)$ $1.1436 (3)$ $0.099 (2)$ H43 0.0699 0.4167 1.1819 0.119^* C44 $0.0448 (2)$ $0.3763 (5)$ $1.0965 (3)$ $0.0865 (17)$ H44 0.0141 0.3196 1.1023 0.104^* C45 $0.0561 (2)$ $0.4005 (4)$ $1.0402 (3)$ $0.0734 (14)$ H45 0.0326 0.3619 1.0073 0.088^* C46 $0.1030 (2)$ $0.4834 (4)$ $1.0320 (2)$ $0.0598 (11)$ H46 0.1113 0.4983 0.9936 0.072^* C51 $0.36291 (18)$ $0.8328 (3)$ $1.07411 (19)$ $0.0499 (10)$ C52 $0.3953 (2)$ $0.9544 (4)$ $1.1619 (2)$ $0.0781 (15)$ H53 0.4123 0.9628 1.2009 0.094^* C54 $0.3552 (2)$ $1.0470 (4)$ $1.1357 (3)$ $0.0768 (15)$ H54 $0.3523 (2)$ $1.0344 (4)$ $1.0779 (3)$ $0.0794 (15)$ H55 0.2998 1.0977 1.0592 0.095^* C56 $0.3272 (2)$ $0.9281 (4)$ $1.0473 (2)$ $0.0633 (12)$	H36	0.2870	0.5380	1.1531	0.078*
C42 0.1243 (2) 0.5200 (5) 1.1367 (2) 0.0769 (15)H42 0.1460 0.5606 1.1698 $0.092*$ C43 0.0779 (3) 0.4342 (6) 1.1436 (3) 0.099 (2)H43 0.0699 0.4167 1.1819 $0.119*$ C44 0.0448 (2) 0.3763 (5) 1.0965 (3) 0.0865 (17)H44 0.0141 0.3196 1.1023 $0.104*$ C45 0.0561 (2) 0.4005 (4) 1.0402 (3) 0.0734 (14)H45 0.0326 0.3619 1.0073 $0.088*$ C46 0.1030 (2) 0.4834 (4) 1.0320 (2) 0.0598 (11)H46 0.1113 0.4983 0.9936 $0.072*$ C51 0.36291 (18) 0.8328 (3) 1.07411 (19) 0.0499 (10)C52 0.3953 (2) 0.9544 (4) 1.1619 (2) 0.0781 (15)H53 0.4123 0.9628 1.2009 $0.094*$ C54 0.3523 1.1178 1.1566 $0.092*$ C55 0.3237 (2) 1.0344 (4) 1.0779 (3) 0.0794 (15)H54 0.3523 1.1077 1.0592 $0.095*$ C56 0.3272 (2) 0.9281 (4) 1.0473 (2) 0.0633 (12)	C41	0.13728 (18)	0.5439 (4)	1.07994 (19)	0.0514 (10)
H42 0.1460 0.5606 1.1698 0.092^* C43 0.0779 (3) 0.4342 (6) 1.1436 (3) 0.099 (2)H43 0.0699 0.4167 1.1819 0.119^* C44 0.0448 (2) 0.3763 (5) 1.0965 (3) 0.0865 (17)H44 0.0141 0.3196 1.1023 0.104^* C45 0.0561 (2) 0.4005 (4) 1.0402 (3) 0.0734 (14)H45 0.0326 0.3619 1.0073 0.088^* C46 0.1030 (2) 0.4834 (4) 1.0320 (2) 0.0598 (11)H46 0.1113 0.4983 0.9936 0.072^* C51 0.36291 (18) 0.8328 (3) 1.07411 (19) 0.0499 (10)C52 0.3953 (2) 0.8472 (4) 1.1319 (2) 0.0687 (13)H52 0.4202 0.7853 1.1507 0.082^* C53 0.3906 (2) 0.9544 (4) 1.1619 (2) 0.0781 (15)H53 0.4123 0.9628 1.2009 0.094^* C54 0.3552 (2) 1.0470 (4) 1.1357 (3) 0.0768 (15)H54 0.3523 1.1178 1.1566 0.092^* C55 0.3237 (2) 1.0344 (4) 1.0779 (3) 0.0794 (15)H55 0.2998 1.0977 1.0592 0.095^* C56 0.3272 (2) 0.9281 (4) 1.0473 (2) 0.0633 (12)	C42	0.1243 (2)	0.5200 (5)	1.1367 (2)	0.0769 (15)
C43 $0.0779 (3)$ $0.4342 (6)$ $1.1436 (3)$ $0.099 (2)$ H43 0.0699 0.4167 1.1819 $0.119*$ C44 $0.0448 (2)$ $0.3763 (5)$ $1.0965 (3)$ $0.0865 (17)$ H44 0.0141 0.3196 1.1023 $0.104*$ C45 $0.0561 (2)$ $0.4005 (4)$ $1.0402 (3)$ $0.0734 (14)$ H45 0.0326 0.3619 1.0073 $0.088*$ C46 $0.1030 (2)$ $0.4834 (4)$ $1.0320 (2)$ $0.0598 (11)$ H46 0.1113 0.4983 0.9936 $0.072*$ C51 $0.36291 (18)$ $0.8328 (3)$ $1.07411 (19)$ $0.0499 (10)$ C52 $0.3953 (2)$ $0.8472 (4)$ $1.1319 (2)$ $0.0687 (13)$ H52 0.4202 0.7853 1.1507 $0.082*$ C53 $0.3906 (2)$ $0.9544 (4)$ $1.1619 (2)$ $0.0781 (15)$ H53 0.4123 0.9628 1.2009 $0.094*$ C54 $0.3523 (2)$ $1.0470 (4)$ $1.1357 (3)$ $0.0768 (15)$ H54 $0.3523 (2)$ $1.0470 (4)$ 1.0566 $0.092*$ C55 $0.3237 (2)$ $1.0344 (4)$ $1.0779 (3)$ $0.0794 (15)$ H55 0.2998 1.0977 1.0592 $0.095*$ C56 $0.3272 (2)$ $0.9281 (4)$ $1.0473 (2)$ $0.0633 (12)$	H42	0.1460	0.5606	1.1698	0.092*
H430.06990.41671.18190.119*C440.0448 (2)0.3763 (5)1.0965 (3)0.0865 (17)H440.01410.31961.10230.104*C450.0561 (2)0.4005 (4)1.0402 (3)0.0734 (14)H450.03260.36191.00730.088*C460.1030 (2)0.4834 (4)1.0320 (2)0.0598 (11)H460.11130.49830.99360.072*C510.36291 (18)0.8328 (3)1.07411 (19)0.0499 (10)C520.3953 (2)0.8472 (4)1.1319 (2)0.0687 (13)H520.42020.78531.15070.082*C530.3906 (2)0.9544 (4)1.1619 (2)0.0781 (15)H530.41230.96281.20090.094*C540.3552 (2)1.0470 (4)1.1357 (3)0.0768 (15)H540.35231.11781.15660.092*C550.3237 (2)1.0344 (4)1.0779 (3)0.0794 (15)H550.29981.09771.05920.095*C560.3272 (2)0.9281 (4)1.0473 (2)0.0633 (12)	C43	0.0779 (3)	0.4342 (6)	1.1436 (3)	0.099(2)
C440.0448 (2)0.3763 (5)1.0965 (3)0.0865 (17)H440.01410.31961.10230.104*C450.0561 (2)0.4005 (4)1.0402 (3)0.0734 (14)H450.03260.36191.00730.088*C460.1030 (2)0.4834 (4)1.0320 (2)0.0598 (11)H460.11130.49830.99360.072*C510.36291 (18)0.8328 (3)1.07411 (19)0.0499 (10)C520.3953 (2)0.8472 (4)1.1319 (2)0.0687 (13)H520.42020.78531.15070.082*C530.3906 (2)0.9544 (4)1.1619 (2)0.0781 (15)H530.41230.96281.20090.094*C540.3552 (2)1.0470 (4)1.1357 (3)0.0768 (15)H540.35231.11781.15660.092*C550.3237 (2)1.0344 (4)1.0779 (3)0.0794 (15)H550.29981.09771.05920.095*C560.3272 (2)0.9281 (4)1.0473 (2)0.0633 (12)	H43	0.0699	0.4167	1.1819	0.119*
H440.01410.31961.10230.104*C450.0561 (2)0.4005 (4)1.0402 (3)0.0734 (14)H450.03260.36191.00730.088*C460.1030 (2)0.4834 (4)1.0320 (2)0.0598 (11)H460.11130.49830.99360.072*C510.36291 (18)0.8328 (3)1.07411 (19)0.0499 (10)C520.3953 (2)0.8472 (4)1.1319 (2)0.0687 (13)H520.42020.78531.15070.082*C530.3906 (2)0.9544 (4)1.1619 (2)0.0781 (15)H530.41230.96281.20090.094*C540.3552 (2)1.0470 (4)1.1357 (3)0.0768 (15)H540.35231.11781.15660.092*C550.3237 (2)1.0344 (4)1.0779 (3)0.0794 (15)H550.29981.09771.05920.095*C560.3272 (2)0.9281 (4)1.0473 (2)0.0633 (12)	C44	0.0448 (2)	0.3763 (5)	1.0965 (3)	0.0865 (17)
C450.0561 (2)0.4005 (4)1.0402 (3)0.0734 (14)H450.03260.36191.00730.088*C460.1030 (2)0.4834 (4)1.0320 (2)0.0598 (11)H460.11130.49830.99360.072*C510.36291 (18)0.8328 (3)1.07411 (19)0.0499 (10)C520.3953 (2)0.8472 (4)1.1319 (2)0.0687 (13)H520.42020.78531.15070.082*C530.3906 (2)0.9544 (4)1.1619 (2)0.0781 (15)H530.41230.96281.20090.094*C540.3552 (2)1.0470 (4)1.1357 (3)0.0768 (15)H540.35231.11781.15660.092*C550.3237 (2)1.0344 (4)1.0779 (3)0.0794 (15)H550.29981.09771.05920.095*C560.3272 (2)0.9281 (4)1.0473 (2)0.0633 (12)	H44	0.0141	0.3196	1.1023	0.104*
H450.03260.36191.00730.088*C460.1030 (2)0.4834 (4)1.0320 (2)0.0598 (11)H460.11130.49830.99360.072*C510.36291 (18)0.8328 (3)1.07411 (19)0.0499 (10)C520.3953 (2)0.8472 (4)1.1319 (2)0.0687 (13)H520.42020.78531.15070.082*C530.3906 (2)0.9544 (4)1.1619 (2)0.0781 (15)H530.41230.96281.20090.094*C540.3552 (2)1.0470 (4)1.1357 (3)0.0768 (15)H540.35231.11781.15660.092*C550.3237 (2)1.0344 (4)1.0779 (3)0.0794 (15)H550.29981.09771.05920.095*C560.3272 (2)0.9281 (4)1.0473 (2)0.0633 (12)	C45	0.0561 (2)	0.4005 (4)	1.0402 (3)	0.0734 (14)
C460.1030 (2)0.4834 (4)1.0320 (2)0.0598 (11)H460.11130.49830.99360.072*C510.36291 (18)0.8328 (3)1.07411 (19)0.0499 (10)C520.3953 (2)0.8472 (4)1.1319 (2)0.0687 (13)H520.42020.78531.15070.082*C530.3906 (2)0.9544 (4)1.1619 (2)0.0781 (15)H530.41230.96281.20090.094*C540.3552 (2)1.0470 (4)1.1357 (3)0.0768 (15)H540.35231.11781.15660.092*C550.3237 (2)1.0344 (4)1.0779 (3)0.0794 (15)H550.29981.09771.05920.095*C560.3272 (2)0.9281 (4)1.0473 (2)0.0633 (12)	H45	0.0326	0.3619	1.0073	0.088*
H460.11130.49830.99360.072*C510.36291 (18)0.8328 (3)1.07411 (19)0.0499 (10)C520.3953 (2)0.8472 (4)1.1319 (2)0.0687 (13)H520.42020.78531.15070.082*C530.3906 (2)0.9544 (4)1.1619 (2)0.0781 (15)H530.41230.96281.20090.094*C540.3552 (2)1.0470 (4)1.1357 (3)0.0768 (15)H540.35231.11781.15660.092*C550.3237 (2)1.0344 (4)1.0779 (3)0.0794 (15)H550.29981.09771.05920.095*C560.3272 (2)0.9281 (4)1.0473 (2)0.0633 (12)	C46	0.1030(2)	0.4834 (4)	1.0320(2)	0.0598 (11)
C510.36291 (18)0.8328 (3)1.07411 (19)0.0499 (10)C520.3953 (2)0.8472 (4)1.1319 (2)0.0687 (13)H520.42020.78531.15070.082*C530.3906 (2)0.9544 (4)1.1619 (2)0.0781 (15)H530.41230.96281.20090.094*C540.3552 (2)1.0470 (4)1.1357 (3)0.0768 (15)H540.35231.11781.15660.092*C550.3237 (2)1.0344 (4)1.0779 (3)0.0794 (15)H550.29981.09771.05920.095*C560.3272 (2)0.9281 (4)1.0473 (2)0.0633 (12)	H46	0.1113	0.4983	0.9936	0.072*
C520.3953 (2)0.8472 (4)1.1319 (2)0.0687 (13)H520.42020.78531.15070.082*C530.3906 (2)0.9544 (4)1.1619 (2)0.0781 (15)H530.41230.96281.20090.094*C540.3552 (2)1.0470 (4)1.1357 (3)0.0768 (15)H540.35231.11781.15660.092*C550.3237 (2)1.0344 (4)1.0779 (3)0.0794 (15)H550.29981.09771.05920.095*C560.3272 (2)0.9281 (4)1.0473 (2)0.0633 (12)	C51	0.36291 (18)	0.8328 (3)	1.07411 (19)	0.0499 (10)
H520.42020.78531.15070.082*C530.3906 (2)0.9544 (4)1.1619 (2)0.0781 (15)H530.41230.96281.20090.094*C540.3552 (2)1.0470 (4)1.1357 (3)0.0768 (15)H540.35231.11781.15660.092*C550.3237 (2)1.0344 (4)1.0779 (3)0.0794 (15)H550.29981.09771.05920.095*C560.3272 (2)0.9281 (4)1.0473 (2)0.0633 (12)	C52	0.3953 (2)	0.8472 (4)	1.1319 (2)	0.0687 (13)
C530.3906 (2)0.9544 (4)1.1619 (2)0.0781 (15)H530.41230.96281.20090.094*C540.3552 (2)1.0470 (4)1.1357 (3)0.0768 (15)H540.35231.11781.15660.092*C550.3237 (2)1.0344 (4)1.0779 (3)0.0794 (15)H550.29981.09771.05920.095*C560.3272 (2)0.9281 (4)1.0473 (2)0.0633 (12)	Н52	0.4202	0.7853	1.1507	0.082*
H530.41230.96281.20090.094*C540.3552 (2)1.0470 (4)1.1357 (3)0.0768 (15)H540.35231.11781.15660.092*C550.3237 (2)1.0344 (4)1.0779 (3)0.0794 (15)H550.29981.09771.05920.095*C560.3272 (2)0.9281 (4)1.0473 (2)0.0633 (12)	C53	0.3906 (2)	0.9544 (4)	1.1619 (2)	0.0781 (15)
C540.3552 (2)1.0470 (4)1.1357 (3)0.0768 (15)H540.35231.11781.15660.092*C550.3237 (2)1.0344 (4)1.0779 (3)0.0794 (15)H550.29981.09771.05920.095*C560.3272 (2)0.9281 (4)1.0473 (2)0.0633 (12)	Н53	0.4123	0.9628	1.2009	0.094*
H540.35231.11781.15660.092*C550.3237 (2)1.0344 (4)1.0779 (3)0.0794 (15)H550.29981.09771.05920.095*C560.3272 (2)0.9281 (4)1.0473 (2)0.0633 (12)	C54	0.3552 (2)	1.0470 (4)	1.1357 (3)	0.0768 (15)
C550.3237 (2)1.0344 (4)1.0779 (3)0.0794 (15)H550.29981.09771.05920.095*C560.3272 (2)0.9281 (4)1.0473 (2)0.0633 (12)	H54	0.3523	1.1178	1.1566	0.092*
H550.29981.09771.05920.095*C560.3272 (2)0.9281 (4)1.0473 (2)0.0633 (12)	C55	0.3237 (2)	1.0344 (4)	1.0779 (3)	0.0794 (15)
C56 0.3272 (2) 0.9281 (4) 1.0473 (2) 0.0633 (12)	H55	0.2998	1.0977	1.0592	0.095*
	C56	0.3272 (2)	0.9281 (4)	1.0473 (2)	0.0633 (12)

H56	0.3053	0.9205	1.0082	0.076*	
C61	0.41146 (17)	0.7433 (3)	0.97288 (19)	0.0498 (10)	
C62	0.4624 (2)	0.8252 (4)	0.9865 (2)	0.0701 (13)	
H62	0.4724	0.8573	1.0249	0.084*	
C63	0.4974 (2)	0.8575 (4)	0.9422 (3)	0.0820 (16)	
H63	0.5305	0.9129	0.9508	0.098*	
C64	0.4840 (2)	0.8093 (5)	0.8859(3)	0.0754 (14)	
H64	0.5080	0.8313	0.8566	0.090*	
C65	0.4352 (2)	0.7288 (5)	0.8733 (2)	0.0738 (14)	
H65	0.4261	0.6955	0.8352	0.089*	
C66	0.39951 (19)	0.6964 (4)	0.9160 (2)	0.0601 (12)	
H66	0.3664	0.6414	0.9063	0.072*	
C71	0.32982 (18)	0.3581 (4)	0.93295 (19)	0.0513 (10)	
C72	0.3667 (2)	0.2540 (5)	0.9363 (2)	0.0847 (16)	
H72	0.3719	0.2079	0.9710	0.102*	
C73	0.3957 (3)	0.2188 (7)	0.8882 (3)	0.116 (3)	
H73	0.4208	0.1502	0.8911	0.140*	
C74	0.3872 (3)	0.2847 (7)	0.8368 (3)	0.106 (2)	
H74	0.4071	0.2616	0.8048	0.127*	
C75	0.3500 (3)	0.3833 (6)	0.8322 (2)	0.0883 (17)	
H75	0.3443	0.4274	0.7968	0.106*	
C76	0.3203 (2)	0.4198 (4)	0.8791 (2)	0.0621 (12)	
H76	0.2937	0.4865	0.8745	0.075*	
C81	0.23877 (18)	0.2965 (3)	1.00825 (19)	0.0466 (9)	
C82	0.2207 (2)	0.2798 (4)	1.0643 (2)	0.0596 (11)	
H82	0.2395	0.3251	1.0969	0.072*	
C83	0.1746 (3)	0.1953 (4)	1.0710 (3)	0.0769 (14)	
H83	0.1635	0.1826	1.1086	0.092*	
C84	0.1448 (2)	0.1297 (4)	1.0230 (3)	0.0789 (16)	
H84	0.1134	0.0741	1.0280	0.095*	
C85	0.1614 (2)	0.1466 (4)	0.9687 (3)	0.0690 (14)	
H85	0.1409	0.1031	0.9360	0.083*	
C86	0.20858 (19)	0.2280 (3)	0.9610 (2)	0.0570 (11)	
H86	0.2203	0.2369	0.9233	0.068*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cul	0.0391 (2)	0.0343 (2)	0.0418 (3)	0.00349 (18)	0.0020 (2)	0.0011 (2)
P1	0.0429 (5)	0.0365 (5)	0.0425 (6)	0.0022 (4)	0.0011 (4)	0.0055 (4)
P2	0.0477 (6)	0.0460 (6)	0.0441 (6)	0.0099 (4)	0.0070 (5)	-0.0008 (5)
P3	0.0404 (5)	0.0371 (5)	0.0540 (7)	0.0011 (4)	-0.0030 (5)	0.0014 (5)
P4	0.0486 (6)	0.0330 (5)	0.0459 (6)	0.0049 (4)	0.0053 (5)	0.0012 (4)
Ga2	0.0661 (3)	0.0693 (4)	0.0929 (5)	-0.0040(3)	0.0211 (3)	-0.0132 (3)
Cl1	0.181 (2)	0.303 (3)	0.148 (2)	-0.065 (2)	0.1092 (19)	-0.041 (2)
Cl2	0.0807 (9)	0.1157 (12)	0.1036 (12)	0.0257 (8)	0.0252 (9)	0.0116 (9)
C13	0.0886 (11)	0.0875 (11)	0.281 (3)	0.0012 (9)	-0.0143 (15)	0.0303 (15)
Cl4	0.1225 (14)	0.1156 (14)	0.210 (2)	-0.0219 (11)	-0.0029 (15)	-0.0690 (15)
C1	0.057 (2)	0.041 (2)	0.055 (3)	0.0115 (18)	0.002 (2)	0.0033 (19)
C2	0.050 (2)	0.051 (2)	0.061 (3)	0.0162 (19)	0.003 (2)	0.000 (2)

C3	0.062 (3)	0.057 (3)	0.063 (3)	0.020 (2)	0.018 (2)	-0.001 (2)
C4	0.047 (2)	0.044 (2)	0.074 (3)	0.0046 (18)	-0.012 (2)	0.005 (2)
C5	0.047 (2)	0.050 (2)	0.073 (3)	0.0144 (19)	-0.003 (2)	0.000 (2)
C6	0.060 (2)	0.038 (2)	0.050(2)	0.0100 (18)	0.000 (2)	0.0004 (18)
C11	0.043 (2)	0.055 (2)	0.047 (2)	-0.0014 (18)	-0.0035 (19)	0.013 (2)
C12	0.073 (3)	0.066 (3)	0.081 (4)	-0.018 (3)	0.005 (3)	0.016 (3)
C13	0.087 (4)	0.089 (4)	0.110 (5)	-0.028 (3)	0.013 (4)	0.039 (4)
C14	0.067 (3)	0.133 (6)	0.116 (6)	-0.009 (4)	0.026 (4)	0.064 (5)
C15	0.063 (3)	0.130 (5)	0.064 (3)	0.019 (3)	0.021 (3)	0.025 (4)
C16	0.053 (2)	0.073 (3)	0.057 (3)	0.001 (2)	0.010 (2)	0.017 (2)
C21	0.043 (2)	0.047 (2)	0.038 (2)	-0.0015 (16)	0.0036 (17)	0.0028 (17)
C22	0.055 (2)	0.047 (2)	0.052 (3)	0.0027 (19)	0.006 (2)	-0.0012 (19)
C23	0.073 (3)	0.046 (2)	0.075 (3)	-0.010 (2)	0.004 (3)	-0.009 (2)
C24	0.056 (3)	0.079 (3)	0.069 (3)	-0.009(2)	0.000 (3)	-0.021 (3)
C25	0.053 (3)	0.082 (3)	0.059 (3)	-0.005(2)	-0.009(2)	0.003 (3)
C26	0.050 (2)	0.063 (3)	0.051 (3)	-0.0043 (19)	-0.005(2)	0.014 (2)
C31	0.060 (3)	0.062 (3)	0.047 (3)	0.007 (2)	0.009 (2)	-0.010 (2)
C32	0.125 (5)	0.090 (4)	0.061 (3)	0.032 (3)	-0.004 (3)	-0.024 (3)
C33	0.162 (7)	0.136 (6)	0.062 (4)	0.036 (5)	-0.002 (4)	-0.034 (4)
C34	0.145 (6)	0.137 (6)	0.054 (4)	-0.020(5)	-0.012 (4)	-0.024 (4)
C35	0.081 (4)	0.122 (5)	0.062 (3)	-0.007(3)	-0.015 (3)	0.019 (3)
C36	0.062 (3)	0.077 (3)	0.053 (3)	0.003 (2)	0.002 (2)	0.001 (2)
C41	0.044 (2)	0.061 (3)	0.050 (3)	0.0123 (19)	0.012 (2)	0.003 (2)
C42	0.060 (3)	0.119 (4)	0.054 (3)	-0.014 (3)	0.015 (3)	0.003 (3)
C43	0.068 (3)	0.164 (6)	0.071 (4)	-0.011 (4)	0.024 (3)	0.027 (4)
C44	0.052 (3)	0.108 (4)	0.098 (5)	-0.012 (3)	0.007 (3)	0.024 (4)
C45	0.057 (3)	0.075 (3)	0.086 (4)	-0.006 (2)	0.007 (3)	0.004 (3)
C46	0.066 (3)	0.059 (3)	0.055 (3)	0.003 (2)	0.014 (2)	-0.001 (2)
C51	0.044 (2)	0.040 (2)	0.062 (3)	-0.0019 (17)	-0.001(2)	-0.0009 (19)
C52	0.076 (3)	0.056 (3)	0.067 (3)	0.007 (2)	-0.011 (3)	-0.003 (2)
C53	0.095 (4)	0.063 (3)	0.068 (3)	-0.003(3)	-0.010 (3)	-0.015 (3)
C54	0.086 (3)	0.054 (3)	0.090 (4)	0.000 (3)	0.013 (3)	-0.017 (3)
C55	0.087 (3)	0.043 (3)	0.105 (5)	0.013 (2)	0.007 (3)	-0.002(3)
C56	0.069 (3)	0.048 (2)	0.069 (3)	0.010 (2)	-0.001 (3)	0.005 (2)
C61	0.038 (2)	0.045 (2)	0.063 (3)	0.0073 (17)	-0.001 (2)	0.000 (2)
C62	0.063 (3)	0.067 (3)	0.082 (4)	-0.022 (2)	0.018 (3)	-0.017 (3)
C63	0.059 (3)	0.070 (3)	0.121 (5)	-0.020(2)	0.026 (3)	-0.008 (3)
C64	0.064 (3)	0.082 (4)	0.086 (4)	0.007 (3)	0.027 (3)	0.019 (3)
C65	0.056 (3)	0.098 (4)	0.066 (3)	0.005 (3)	0.005 (3)	-0.002 (3)
C66	0.043 (2)	0.074 (3)	0.061 (3)	-0.009 (2)	0.003 (2)	-0.003 (2)
C71	0.046 (2)	0.053 (2)	0.055 (3)	0.0011 (18)	0.010 (2)	-0.007 (2)
C72	0.094 (4)	0.086 (4)	0.074 (4)	0.039 (3)	0.013 (3)	-0.018 (3)
C73	0.098 (4)	0.148 (6)	0.099 (5)	0.053 (4)	0.000 (4)	-0.057 (5)
C74	0.080 (4)	0.164 (7)	0.078 (5)	-0.008 (4)	0.027 (4)	-0.058 (5)
C75	0.097 (4)	0.115 (5)	0.057 (3)	-0.015 (4)	0.026 (3)	-0.014 (3)
C76	0.067 (3)	0.064 (3)	0.056 (3)	-0.005 (2)	0.013 (2)	-0.002 (2)
C81	0.050 (2)	0.0335 (19)	0.055 (3)	0.0083 (17)	0.005 (2)	0.0035 (19)
C82	0.070 (3)	0.042 (2)	0.069 (3)	0.003 (2)	0.020 (3)	0.001 (2)
C83	0.091 (4)	0.064 (3)	0.083 (4)	0.003 (3)	0.039 (3)	0.006 (3)

supplementary materials

C84	0.075 (3)	0.049 (3)	0.113 (5)	-0.010 (2)	0.018 (3)	0.015 (3)
C85	0.074 (3)	0.044 (2)	0.085 (4)	-0.007 (2)	-0.001 (3)	0.000 (2)
C86	0.067 (3)	0.036 (2)	0.065 (3)	0.0003 (19)	0.003 (2)	0.008 (2)

Geometric parameters (Å, °)

Cu1—P1	2.3148 (11)	C33—C34	1.337 (8)
Cu1—P4	2.3154 (11)	С33—Н33	0.9300
Cu1—P3	2.3170 (11)	C34—C35	1.386 (8)
Cu1—P2	2.3198 (12)	С34—Н34	0.9300
P1-C11	1.817 (4)	C35—C36	1.378 (6)
P1—C1	1.835 (4)	С35—Н35	0.9300
P1—C21	1.836 (4)	С36—Н36	0.9300
P2—C31	1.822 (4)	C41—C46	1.378 (6)
P2—C41	1.842 (4)	C41—C42	1.381 (6)
P2—C3	1.847 (4)	C42—C43	1.397 (7)
P3—C51	1.825 (4)	C42—H42	0.9300
P3—C61	1.829 (4)	C43—C44	1.342 (8)
P3—C4	1.840 (4)	C43—H43	0.9300
P4—C71	1.818 (4)	C44—C45	1.360 (7)
P4—C81	1.833 (4)	C44—H44	0.9300
P4—C6	1.849 (4)	C45—C46	1.390 (6)
Ga2—Cl1	2.137 (2)	C45—H45	0.9300
Ga2—Cl4	2.1491 (18)	C46—H46	0.9300
Ga2—Cl2	2.1524 (15)	C51—C52	1.380 (6)
Ga2—Cl3	2.1694 (19)	C51—C56	1.388 (5)
C1—C2	1.516 (6)	C52—C53	1.390 (6)
C1—H1A	0.9700	С52—Н52	0.9300
C1—H1B	0.9700	C53—C54	1.356 (6)
C2—C3	1.517 (6)	С53—Н53	0.9300
C2—H2A	0.9700	C54—C55	1.372 (7)
C2—H2B	0.9700	C54—H54	0.9300
С3—НЗА	0.9700	C55—C56	1.386 (6)
C3—H3B	0.9700	С55—Н55	0.9300
C4—C5	1.531 (5)	С56—Н56	0.9300
C4—H4A	0.9700	C61—C66	1.373 (6)
C4—H4B	0.9700	C61—C62	1.407 (5)
C5—C6	1.537 (5)	C62—C63	1.387 (7)
C5—H5A	0.9700	С62—Н62	0.9300
C5—H5B	0.9700	C63—C64	1.368 (7)
C6—H6A	0.9700	С63—Н63	0.9300
C6—H6B	0.9700	C64—C65	1.362 (7)
C11—C16	1.392 (6)	C64—H64	0.9300
C11—C12	1.393 (6)	C65—C66	1.368 (6)
C12—C13	1.383 (7)	С65—Н65	0.9300
C12—H12	0.9300	С66—Н66	0.9300
C13—C14	1.354 (9)	C71—C76	1.386 (6)
C13—H13	0.9300	C71—C72	1.397 (6)
C14—C15	1.367 (8)	C72—C73	1.387 (8)
C14—H14	0.9300	С72—Н72	0.9300

a		~~~ ~~ ·	
C15—C16	1.384 (6)	C73—C74	1.365 (9)
C15—H15	0.9300	С73—Н73	0.9300
C16—H16	0.9300	C74—C75	1.349 (8)
C21—C22	1.378 (5)	С74—Н74	0.9300
C21—C26	1.388 (5)	C75—C76	1.378 (7)
C22—C23	1.407 (5)	С75—Н75	0.9300
C22—H22	0.9300	С76—Н76	0.9300
C23—C24	1.357 (6)	C81—C86	1.383 (5)
С23—Н23	0.9300	C81—C82	1.394 (6)
C24—C25	1.383 (6)	C82—C83	1.382 (6)
C24—H24	0.9300	С82—Н82	0.9300
C25—C26	1.363 (6)	C83—C84	1.374 (7)
С25—Н25	0.9300	С83—Н83	0.9300
C26—H26	0.9300	C84—C85	1.344 (7)
C31—C36	1.381 (6)	C84—H84	0.9300
C31—C32	1.402 (6)	C85—C86	1.381 (6)
C32—C33	1.370 (7)	С85—Н85	0.9300
С32—Н32	0.9300	C86—H86	0.9300
			019000
P1—Cu1—P4	121 14 (4)	$C_{36} - C_{31} - C_{32}$	1173(4)
P1—Cu1—P3	116 55 (4)	$C_{36} = C_{31} = P_{2}$	117.3(1) 118.7(3)
P4—Cu1—P3	98 34 (4)	C_{32} C_{31} P_{2}	124 1 (4)
P1Cu1P2	90.31(1)	$C_{32} = C_{31} = C_{31}$	1209(5)
$P_4 = C_{11} = P_2$	113 00 (4)	C_{33} C_{32} H_{32}	110.6
$P_{1} = C_{11} = P_{2}$	113.90(4) 107.84(4)	C_{31} C_{32} H_{32}	119.0
13 - Cu - 12	107.04(4)	$C_{31} = C_{32} = C_{32}$	119.0
$\begin{array}{cccc} C11 & P1 & C21 \\ \end{array}$	101.10(19) 102.58(19)	$C_{34} = C_{33} = C_{32}$	120.2 (0)
C1 P1 C21	102.38(18) 101.84(18)	C_{22} C_{22} H_{22}	119.9
$C_1 = C_1 = C_2 $	101.04(10) 120.82(12)	$C_{32} = C_{33} = C_{35}$	119.9
C1 = P1 = Cu1	120.62(12)	$C_{22} = C_{24} = U_{24}$	121.0 (0)
	111.41(14) 11(.42(12))	C35—C34—H34	119.2
$C_2I = PI = C_4I$	110.42(12)	C35—C34—H34	119.2
$C_{31} = P_2 = C_{41}$	102.5(2)	$C_{30} = C_{35} = C_{34}$	118.2 (5)
$C_{31} = P_{2} = C_{3}$	103.4 (2)	C36—C35—H35	120.9
C41—P2—C3	101.98 (19)	С34—С35—Н35	120.9
C31—P2—Cul	116.47 (14)	C35—C36—C31	121.8 (5)
C41—P2—Cu1	119.01 (14)	С35—С36—Н36	119.1
C3—P2—Cu1	111.45 (15)	С31—С36—Н36	119.1
C51—P3—C61	101.95 (19)	C46—C41—C42	118.5 (4)
C51—P3—C4	103.15 (18)	C46—C41—P2	118.9 (3)
C61—P3—C4	102.94 (19)	C42—C41—P2	122.6 (4)
C51—P3—Cu1	116.12 (13)	C41—C42—C43	119.1 (5)
C61—P3—Cu1	118.01 (13)	C41—C42—H42	120.5
C4—P3—Cu1	112.72 (13)	C43—C42—H42	120.5
C71—P4—C81	102.67 (19)	C44—C43—C42	121.8 (5)
C71—P4—C6	101.01 (19)	C44—C43—H43	119.1
C81—P4—C6	103.92 (18)	C42—C43—H43	119.1
C71—P4—Cu1	118.60 (14)	C43—C44—C45	119.9 (5)
C81—P4—Cu1	119.15 (12)	C43—C44—H44	120.1
C6—P4—Cu1	109.15 (12)	C45—C44—H44	120.1

Cl1—Ga2—Cl4	111.68 (11)	C44—C45—C46	119.7 (5)
Cl1—Ga2—Cl2	108.81 (10)	C44—C45—H45	120.2
Cl4—Ga2—Cl2	111.63 (8)	C46—C45—H45	120.2
Cl1—Ga2—Cl3	108.46 (12)	C41—C46—C45	121.1 (5)
Cl4—Ga2—Cl3	109.03 (9)	C41—C46—H46	119.4
Cl2—Ga2—Cl3	107.08 (7)	C45—C46—H46	119.4
C2—C1—P1	116.6 (3)	C52—C51—C56	118.2 (4)
C2—C1—H1A	108.1	C52—C51—P3	125.3 (3)
P1—C1—H1A	108.1	C56—C51—P3	116.5 (3)
C2—C1—H1B	108.1	C51—C52—C53	119.9 (4)
P1—C1—H1B	108.1	С51—С52—Н52	120.0
H1A—C1—H1B	107.3	С53—С52—Н52	120.0
C1—C2—C3	114.3 (3)	C54—C53—C52	121.8 (5)
C1—C2—H2A	108.7	С54—С53—Н53	119.1
C3—C2—H2A	108.7	С52—С53—Н53	119.1
C1—C2—H2B	108.7	C53—C54—C55	118.8 (5)
C3—C2—H2B	108.7	С53—С54—Н54	120.6
H2A—C2—H2B	107.6	С55—С54—Н54	120.6
C2—C3—P2	115.3 (3)	C54—C55—C56	120.5 (4)
С2—С3—НЗА	108.4	С54—С55—Н55	119.8
Р2—С3—НЗА	108.4	С56—С55—Н55	119.8
С2—С3—Н3В	108.4	C55—C56—C51	120.8 (4)
P2—C3—H3B	108.4	С55—С56—Н56	119.6
НЗА—СЗ—НЗВ	107.5	С51—С56—Н56	119.6
C5—C4—P3	114.3 (3)	C66—C61—C62	118.1 (4)
C5—C4—H4A	108.7	C66—C61—P3	120.4 (3)
P3—C4—H4A	108.7	C62—C61—P3	121.5 (4)
C5—C4—H4B	108.7	C63—C62—C61	119.3 (5)
P3—C4—H4B	108.7	С63—С62—Н62	120.4
H4A—C4—H4B	107.6	С61—С62—Н62	120.4
C4—C5—C6	114.6 (3)	C64—C63—C62	121.0 (5)
С4—С5—Н5А	108.6	С64—С63—Н63	119.5
С6—С5—Н5А	108.6	С62—С63—Н63	119.5
C4—C5—H5B	108.6	C65—C64—C63	119.3 (5)
С6—С5—Н5В	108.6	С65—С64—Н64	120.3
H5A—C5—H5B	107.6	С63—С64—Н64	120.3
C5—C6—P4	113.4 (3)	C64—C65—C66	120.8 (5)
С5—С6—Н6А	108.9	С64—С65—Н65	119.6
P4—C6—H6A	108.9	С66—С65—Н65	119.6
С5—С6—Н6В	108.9	C65—C66—C61	121.5 (4)
Р4—С6—Н6В	108.9	С65—С66—Н66	119.3
H6A—C6—H6B	107.7	С61—С66—Н66	119.3
C16—C11—C12	116.8 (4)	C76—C71—C72	117.6 (4)
C16—C11—P1	121.4 (3)	C76—C71—P4	120.3 (3)
C12—C11—P1	121.8 (4)	C72—C71—P4	122.1 (4)
C13—C12—C11	121.7 (6)	C73—C72—C71	120.4 (6)
C13—C12—H12	119.2	С73—С72—Н72	119.8
C11—C12—H12	119.2	С71—С72—Н72	119.8
C14—C13—C12	119.5 (6)	C74—C73—C72	120.1 (6)

C14—C13—H13	120.2	С74—С73—Н73	119.9
C12—C13—H13	120.2	С72—С73—Н73	119.9
C13—C14—C15	121.2 (6)	C75—C74—C73	120.1 (6)
C13—C14—H14	119.4	С75—С74—Н74	120.0
C15—C14—H14	119.4	С73—С74—Н74	120.0
C14—C15—C16	119.4 (6)	C74—C75—C76	121.0 (6)
C14—C15—H15	120.3	С74—С75—Н75	119.5
C16—C15—H15	120.3	С76—С75—Н75	119.5
C15—C16—C11	121.5 (5)	C75—C76—C71	120.6 (5)
C15—C16—H16	119.3	С75—С76—Н76	119.7
C11—C16—H16	119.3	С71—С76—Н76	119.7
C22—C21—C26	118.6 (4)	C86—C81—C82	117.9 (4)
C22—C21—P1	119.4 (3)	C86—C81—P4	121.2 (3)
C26—C21—P1	122.0 (3)	C82—C81—P4	120.8 (3)
C21—C22—C23	120.0 (4)	C83—C82—C81	119.6 (5)
C21—C22—H22	120.0	С83—С82—Н82	120.2
C23—C22—H22	120.0	C81—C82—H82	120.2
C24—C23—C22	120.1 (4)	C84—C83—C82	121.2 (5)
С24—С23—Н23	119.9	С84—С83—Н83	119.4
С22—С23—Н23	119.9	С82—С83—Н83	119.4
C23—C24—C25	120.0 (4)	C85—C84—C83	119.6 (5)
C23—C24—H24	120.0	С85—С84—Н84	120.2
C25—C24—H24	120.0	C83—C84—H84	120.2
C26—C25—C24	120.0 (4)	C84—C85—C86	120.5 (5)
С26—С25—Н25	120.0	С84—С85—Н85	119.7
С24—С25—Н25	120.0	С86—С85—Н85	119.7
C25—C26—C21	121.3 (4)	C85—C86—C81	121.3 (5)
С25—С26—Н26	119.4	С85—С86—Н86	119.4
C21—C26—H26	119.4	С81—С86—Н86	119.4

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C21-C26 and C81-C86 benzene rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D···· A	D—H···A
$C14$ —H14···· $Cg1^i$	0.93	2.77	3.702 (8)	175
С55—Н55…Сg2 ^{іі}	0.93	2.66	3.526 (5)	155

Symmetry codes: (i) -x+1/2, y+1/2, -z+3/2; (ii) x, y+1, z.